Our publications & strategic partners research papers & articles

Our scientists and engineers focus on fundamental scientific breakthroughs to help guide the advancement of AI. Browse some of our publications spanning a wide range of core AI disciplines.

The Riemannian Geometry of Deep Generative Models
H. Shao, A. Kumar, T. Fletcher Download paper

Dialog-based Interactive Image Retrieval
H. Wu, X. Guo, Y. Cheng, S. J. Rennie, G. Tesauro and R. S. Feris  Download paper
 Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu  Download paper
Model Accuracy and Runtime Tradeoff in Distributed Deep Learning: A Systematic Study
S. Gupta, W. Zhang, and F. Wang  Download paper
 Increasing Trust in AI Services through Supplier's Declarations of Conformity
M. Hind, S. Mehta, A. Mojsilović, R. Nair, K. N. Ramamurthy, A. Olteanu and K. R. Varshney Download paper
An End-To-End Machine Learning Pipeline That Ensures Fairness Policies
S. Shaikh, H. Vishwakarma, S. Mehta, K. R. Varshney, K. N. Ramamurthy and D. Wei  Download paper
 Mixed-precision training of deep neural networks using computational memory
S. R. Nandakumar, M. Le Gallo, I. Boybat, B. Rajendran, A. Sebastian and E. Eleftheriou  Download paper
Joint Learning of Correlated Sequence Labelling Tasks Using Bidirectional Recurrent Neural Networks
Vardaan Pahuja, Anirban Laha, Shachar Mirkin, Vikas C. Raykar, Lili Kotlerman, Guy Lev  Download paper
 Elseviers \ BAIR  Cornell |  AUT
 JAIR  Nesta
   

 2a